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We introduce the combination technique for the numerical solution ofd-
dimensional eigenproblems on sparse grids. Here,O(d · (log N)d−1) different prob-
lems, each of sizeO(N), have to be solved independently. This is in contrast to
the one problem of sizeO(Nd) for a conventional finite element discretization,
where N denotes the number of grid points in one coordinate direction. There-
fore, also higher dimensional eigenvalue problems can be treated by our sparse
grid combination approach. We apply this method to solve the three-dimensional
Schrödinger equation for hydrogen (one-electron problem) and the six-dimensional
Schrödinger equation for helium (two-electron problem) in strong magnetic and elec-
tric fields. c© 2000 Academic Press
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1. INTRODUCTION

In the late 1960s evidence for the existence of strong magnetic fields in the vicinity of
white dwarf stars (102–105 T) and neutron stars (107–109 T) was found. These strong to very
strong magnetic fields induce drastic changes in the atomic structure of the influenced matter.
Therefore atomic properties such as energy-levels and wavelengths need to be reconsidered
for matter under these conditions.

For hydrogen atoms in magnetic fields, numerical calculations for a wide range of states
and field strengths have been done and the corresponding eigenvalues and eigenfunctions
are known precisely; see [32, 39, 41] and the references cited therein. These results were
compared to observational data and thus delivered evidence for the existence of hydrogen
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in the atmospheres of white dwarves and neutron stars with corresponding magnetic field
strengths. The case of hydrogen in magnetic fields is considered solved.

The situation is different for helium atoms in strong magnetic fields. First calculations
for some atomic properties with the needed precision have been performed only recently;
see [7] or [8] and the references cited therein. There, either a two-particle basis composed
of one-particle states of a special Gaussian basis set is used [7] or a combination of the
hyperspherical close coupling approach and a finite element method of quintic order [8]
is employed. In any case the six dimensions of the original Schr¨odinger equation for two
electrons are brought down to three dimensions using symmetry arguments. However, these
techniques can no longer be applied in cases where both a magnetic and an electric field
are present.

In this paper, we propose to directly deal with the six-dimensional eigenvalue problem
resulting from the Born–Oppenheimer approximation of the helium atom. Here, a finite
element discretization with, for example, piecewise six-linear test and trial functions would
lead to a discrete eigenvalue problem to be solved. If (after restricting the problem to a
sufficiently large finite domain) we assume a spatial resolution byN grid points in each
direction, then the size of the corresponding discrete eigenvalue problem will be proportional
to N6. We encounter the so-called curse of dimensionality. This renders the direct finite
element discretization obsolete: For a reasonable value ofN, the resulting problem cannot
be stored and solved on any existing parallel computer because of its mere size.

However, there is a special discretization technique using so-called sparse grids which
allows us to cope with the complexity of the problem, at least to some extent. This method
has been originally developed for the solution of partial differential equations [5, 9, 24,
48] and is now used successfully also for integral equations [16, 23], interpolation and
approximation [6, 22, 31, 43, 45], and integration problems [18]. In the information-based
complexity community it is also known as “hyperbolic cross points” and the idea can even
be traced back to [44]. For ad-dimensional problem, the sparse grid approach employs
only O(N(log N)d−1) grid points in the discretization. It can be shown that an accuracy
of O(N−2 log(N)d−1) can be achieved pointwise or with respect to theL2- or L∞-norm
provided that the solution is sufficiently smooth. Thus, in comparison to conventional full
grid methods, which needO(Nd) points for an accuracy ofO(N−2), the sparse grid method
can be employed also for higher-dimensional problems. The curse of dimensionality of full
grid methods affects sparse grids much less. Note that there exist different variants of solvers
working on sparse grids, each with its distinctive advantage and drawback. One variant is
based on finite difference discretization [20, 40], another approach uses Galerkin finite
element discretization [5, 9, 37], and the so-called combination technique [24] makes use
of multivariate extrapolation [13].

In the following, we apply the sparse grid combination technique to the eigenproblem of
hydrogen and helium in strong magnetic and electric fields. To this end we have to modify
the original approach somewhat and have to adapt it to the solution of eigenproblems. It
turns out that this new method for the numerical solution of the Schr¨odinger equation allows
us to deal directly with the six-dimensional helium problem on available parallel computers.
Furthermore, the results for hydrogen with and without strong magnetic and electric fields
as well as helium with and without strong magnetic fields match the values from the recent
literature quite well. Because the sparse grid combination technique employs a conventional
grid size parameter, the results obtained on different refinement levels can be postprocessed
in a classical extrapolation step which further improves on the results. This is usually not
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possible for the other techniques. Furthermore, the combination method can be parallelized
in a straightforward way; see [19, 21]. In contrast to the above-mentioned approaches, we
do not make use of inherent symmetries of the system to reduce the number of dimensions
of the problem nor do we employ specially developed basis sets. This allows our method to
be used straightforwardly also in the case of helium in general magneticandelectric fields.

The remainder of this paper is organized as follows: In Section 2 we discuss our numerical
approach for the numerical solution of the Schr¨odinger equation. We present the basic idea
of the combination technique, show how it must be modified for the treatment of eigenvalue
problems as they arise with hydrogen and helium under strong magnetic and electric fields,
and give some remarks on the computational aspects of the implementation. In Section 3
we present the results of our numerical computations and compare them to those of other
approaches. We first consider the hydrogen problem, impose a strong magnetic field on it,
and treat also the case of magnetic and electric fields. Then we turn to the helium problem,
consider it under a strong magnetic field, and show finally the result for a computation for
helium with both magnetic and electric fields. Some concluding remarks close the paper.

2. NUMERICAL APPROACH

In this section we introduce the problem to be considered, present the main principles of
the combination technique for sparse grids, discuss necessary modifications for it, and give
some remarks on computational aspects of the implementation.

2.1. The Eigenvalue Problem

If we use the Born–Oppenheimer approximation and neglect the finite mass of the nucleus,
the Hamiltonian for hydrogen in a strong magnetic fieldBz along thez-axis and in a general
electric fieldF reads

H = −1− 2

|x| − 2iβ

 y
−x
0

 · ∇ + 4βS+ β2(x2+ y2)+ F · x, (1)

wherex = (x, y, z) ∈ R3. Here,−1 denotes the kinetic energy of the electron, the term
−2/|x| gives its Coulomb potential energy in the field of the nucleus,−2iβ · (y −x 0)T · ∇
denotes its Zeeman term, 4βSgives its spin energy, andβ2(x2+ y2) gives its diamagnetic
term.F · x denotes the influence of the electric fieldF . The length is measured in units of
the Bohr radiusaBohr and energy is measured in Rydberg. The magnetic field strength is
measured inBZ = 4.70107× 105 T, β is the strength of the magnetic field which points
in the z-direction, and the electric field strength is measured inFZ = 5.14× 1011 V/m.
This is a Hamiltonian living in three dimensions. Note that forF = 0 andβ = 0 we regain
the classical Hamiltonian of a one particle system with no outer fields, i.e., a one-electron
system with fixed nucleus.

For the helium atom in a strong magnetic fieldBz along thez-axis and in a general electric
field F , the Hamiltonian reads

H =
2∑

j=1

−1 j − 2

|x j | − 2iβ

 yj

−xj

0

 · ∇ + 4βSj +β2
(
x2

j + y2
j

)+ F · x j

 + 1

|x1− x2| ,
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wherex = (x1, x2) ∈ R6. This sum includes for both electrons their respective energies from
Eq. (1) and the expression 1

|x1−x2| corresponds to the electron–electron repulsion energy. We
use charge-Z-scaled atomic units, i.e.,Z2 Rydberg as energy unit, and we measure length
in aBohr/Z, where for the helium atomZ equals 2. The magnetic field strength is measured
in BZ = Z2× 4.70107× 105 T; β is the strength of the magnetic field which points in
thez-direction. The electric field strength is now measured inFZ = Z × 5.14× 1011 V/m.
Because relativistic effects on the energies of helium are smaller than the required level of
accuracy for astrophysical applications we neglect spin–orbit coupling. This Hamiltonian
now lives in six dimensions. Again note that forβ = 0 andF = 0 we obtain the Hamiltonian
of a two-particle system with no outer fields, i.e., a two-electron system with fixed nucleus.

In both cases we have to solve the associated stationary Schr¨odinger equation

Hu = Eu, (2)

which is an eigenproblem in either three- or six-dimensional space. The functionu denotes
the wavefunction andE denotes the eigenvalue to be found. The boundary condition is

u(x)→ 0 for |x| → ∞.

A conventional finite element discretization would now employ an equidistant gridÄn,...,n

with mesh sizehn = 2−n for each coordinate direction. To make things feasible, we have
to restrict the continuous problem onRd to a problem on a finite domain. To this end
we choose a sufficiently large box̄Ä = [−a,a]d and restrict the eigenproblem to it. This
approximation is justified because the eigenfunctionsu decay rapidly away from the origin
and approach zero in the limit|x| → ∞. Therefore, as usual in many physics applications,
we cut off the eigenfunctions on the boundary ofÄ and set their values equal to zero there.
It remains to find a proper value fora.

A finite element method with piecewised-linear test and trial functions on gridÄn,...,n

now would result in the discrete eigensystem

Hn,...,nun,...,n = λn,...,nMn,...,nun,...,n (3)

with mass matrixMn,...,n, discrete HamiltonianHn,...,n, and discrete eigenvaluesλn,...,n.
This problem might in principle be treated by an appropriate eigensolver like the Lanzcos

method, the (Jacobi–) Davidson method, or some other suitable iterative method. For a
sufficiently smooth continuous solutionu, we then would obtain an erroren,...,n = u− un,...,n

whose size inL p-norms is of the orderO(h2
n), p = 1, 2,∞. The number of grid points

would be of orderO(h−d
n ) and, in the best case, if the most effective techniques like

multigrid methods are used, the number of operations is of the same order. However, this
direct application of a finite element discretization and an eigensolver for the arising discrete
system is clearly not possible for a six-dimensional problem. The arising system cannot be
stored and solved on even the largest parallel computers today.

2.2. The Sparse Grid Combination Technique

Therefore we proceed as follows: We discretize and solve the problem on a certain
sequence of gridsÄi1,...,id with uniform mesh sizesh j = 2a · 2−i j in the j th coordinate
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direction. These grids may possess different mesh sizes for different coordinate directions.
To this end, we consider all gridsÄi1,...,id with

i1+ · · · + i d = n+ (d − 1)− l , l = 0, ..,d − 1, i j > 0.

The finite element discretization of (2) with piecewised-linear test and trial functions then
results in the discrete eigensystems

Hi1,...,i d ui1,...,id = λi1,...,id Mi1,...,id ui1,...,id (4)

with mass matricesMi1,...,id , discrete HamiltoniansHi1,...,id , and eigenvaluesλi1,...,id . We then
solve these problems by a feasible method. The discrete eigenfunctionsui1,...,i d are contained
in the spaceSi1,...,id of homogeneous piecewised-linear functions on gridÄi1,...,id .

Note that all these problems are substantially reduced in size in comparison to (3).
Instead of one problem with size dim(Sn,...,n) = O(h−d

n ) = O(2nd), we now have to deal
with O(d · nd−1) problems of size dim(Si1,...,id) = O(h−1

n ) = O(2n). For any reasonable
n, each problem fits nicely into the main memory of a modern workstation. Moreover, all
these problems can be solved independently, which allows a straightforward parallelization
on a coarse grain level; see [19]. Also, there is a simple but effective static load balancing
strategy available [21].

Finally we linearly combine the resultsui1,...,id ∈ Si1,...,id from the different gridsÄi1,...,i d

as follows:

uc
n =

d−1∑
l=0

(−1)l
(

d − 1

l

) ∑
i1+···+id=n+(d−1)−l

ui1,...,id . (5)

The resulting functionuc
n lives in a so-called sparse grid space

Sc
n :=

⋃
i1+···+id=n+(d−1)−l

l=0,...,d−1

Si1,...,id .

This sparse grid space has dim(Sc
n) = O(h−1

n (log(h−1
n ))d−1). It is spanned by a piecewise

d-linear hierarchical tensor product basis; see [9]. Note that the summation of the discrete
functions from different spacesSi1,...,id in (5) involvesd-linear interpolation which resembles
just the transformation to a representation in this hierarchical product basis. For details see
[20, 25].

For the two-dimensional case, we display the grids needed in the combination formula
of level 4 in Fig. 1 and give the resulting sparse grid.

The corresponding eigenvalues are combined in the same manner:

λc
n :=

d−1∑
l=0

(−1)l
(

d − 1

l

) ∑
i1+···+id=n+(d−1)−l

λi1,...,id . (6)

This is possible because of their representation with the Rayleigh quotient.
For second-order elliptic PDE model problems, it was proven that the combination so-

lution uc
n is almost as accurate as the full grid solutionun,...,n; i.e., the discretization error

satisfies ∥∥ec
n,...,n

∥∥
L p

:= ∥∥u− uc
n

∥∥
L p
= O

(
h2

n log
(
h−1

n

)d−1)
,
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FIG. 1. Combination technique on level 4,d = 2, l = 4.

provided that a slightly stronger smoothness requirement onu than for the full grid approach
holds. We need the seminorm

|u|∞ :=
∥∥∥∥∥ ∂2du∏d

j=1 ∂x2
j

∥∥∥∥∥
∞

(7)

to be bounded. Furthermore, a series expansion of the error is necessary for the combination
technique. Its existence was shown for PDE model problems in [12]. This approach should
carry over to the eigenvalue problem without problems. Note that the combination technique
can be interpreted as a certain multivariate extrapolation method which works on a sparse
grid; for details see [13, 24, 38]. This also gives later the possibility of further improving on
the results of the combination method by extrapolating the achieved results. The previously
mentioned other approaches [7, 8] do not allow this.

The combination technique is only one of various methods to solve problems on sparse
grids. There exist also finite difference [20, 40] and Galerkin finite element approaches [5, 9,
11] which work directly in the hierarchical product basis on the sparse grid. These methods
allow adaptive local refinement of the sparse grid in a natural way. This cannot be achieved
for the combination technique. However, the combination technique is conceptually much
simpler and easier to implement. Moreover it allows the reuse of standard solvers for its
different subproblems and is straightforwardly parallelizable.

2.3. Identification of Eigenvalues

Now the discrete eigenvalues and eigenfunctions have to be computed for every grid
arising in the combination technique. For reasons of efficiency and complexity we do not
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FIG. 2. The ordering of the eigenvalues for the combined grid does not need to correspond to the ordering on
the grids used in the combination technique(λi ≤ λi+1).

aim at the whole spectrum but merely settle for a sufficient amount eigenvalues and their
associated eigenfunctions at the lower end of the spectrum. We employ a preconditioned
version of the SIRQIT-CG [35] algorithm where we use a Jacobi preconditioner on the
search directions of each eigenvalue.

Note that the combination formula (6) for the eigenvalues is not as straightforward as it
seems. We encounter the following identification problem: The eigensolver computes on
each grid the eigenfunctions in the ordering of the size of the eigenvalues. However, it may
happen that the ordering of the discrete eigenvalues is different on the various grids of the
combination technique. It is a priori not obvious which eigenvalue on one grid corresponds
to which eigenvalue on an other grid; see Fig. 2 for a two-dimensional example. Therefore
a procedure has to be developed to identify the respective eigenvalue on the different grids
of the combination technique, before its values can be entered in the combination formula
(6) to obtain the sparse grid approximation to thekth smallest eigenvalue of the continuous
problem.

To this end, we proceed as follows: We define two grids to be “neighboring” if either
their indices differ only in one coordinate direction by±1 or their indices differ in two
coordinate directions, one by−1 and the other by+1. In other words we have either

Äi1,...,i k−1,i k±1,i k+1,...,id

for somek ∈ {1, . . . ,d} or

Äi1,...,i p−1,i p+1,i p+1,...,iq−1,iq−1,iq+1,,...,id (8)

for somep,q ∈ {1, . . . ,d}, p 6= q, as the neighboring grids ofÄi1,...,id .
Furthermore we define an ordering of all the gridsÄi1,...,i d and their associated indices

(i1, . . . , i d) arising in the combination technique by the following enumeration procedure:

l = 0 to d − 1
i1 = 1 to n− l

i2 = 1 to n− l − (i1− 1)
i3 = 1 to n− l − (i1− 1)− (i2− 1)

.....

i d−1 = 1 to n− l − (i1− 1)− · · · − (i d−2− 1)
i d = n− l − (i1− 1)− (i2− 1)− · · · − (i d−2− 1)− (i d−1− 1).

Now, we traverse the set of grids according to this ordering. For each grid we pick that
neighboringgrid which was encountered most recently in the traversal. This gives us a
unique sequence of pairs of neighboring grids.
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We match the eigenfunctions (and thus their corresponding eigenvalues) of each pair of
grids as follows: We interpolate the eigenfunctions (or alternatively their Fourier trans-
forms) from the two respective grids to the finer grid which contains both grids (i.e.,
Äi1,...,i p−1,i p+1,i p+1,...,id in (8)) and we search there for the pairs of functions with the smallest
distance measured in the Euclidean norm. This identifies their associated eigenvalues. This
process starts with the gridÄ1,1,..,n and the desired eigenvalue there and traverses through
the sequence of pairs of grids. Altogether this gives us the discrete eigenvalues needed
for (6).

It is not clear to us if our approach always works. For example, for higher eigenvalues
the shape of the eigenfunctions belonging to the same continuous eigenvalue might vary
quite a lot from grid to grid, especially on strong anisotropic grids. This would result in
intertwined eigenvalues.

A certain problem is the case of multiple eigenvalues. The eigenfunctions in the associated
eigenspace are not unique and an identification is not possible. However, by imposing small
perturbations on the problem we can cope with this effect; i.e., the multiple eigenvalues
become numerically distinct and the eigenfunctions become unique. Of course, one has to
take care that the introduced error stays smaller than the discretization error. To this end we
slightly change the size ofÄ with respect to the different coordinate directions. In all our
numerical experiments, the introduced error was below the accuracy of the approximation
but allowed multiple eigenvalues to be distinguished properly. Note furthermore that we did
not use all grids of the combination technique in the case of multiple eigenvalues, because
grids with a mesh size ofh j = 2a · 1/2 only in at least one coordinate direction do not allow
enough freedom to resolve multiple eigenvalues properly. Thus, we have to omit these grids
from the combination process. The modified formula for the combination technique is
then

uc
n =

d−1∑
l=0

(−1)l
(

d − 1

l

) ∑
i1+···+id=n+(d−1)−l

i j≥ml+1

ui1,...,id with ui1,...,id ∈ Si1,...,id ,

with ml (=minimal level) being a parameter for the minimal number of points in one
dimension on the subgrids. Withml > 0 the combination technique now involves fewer grids
and the resulting sparse grid therefore has fewer points. Note that a similar modification
of the combination technique was already used in the treatment of turbulent fluid flow
problems; see [29].

Another difficulty is the following: In the presence of a magnetic field, i.e., ifβ 6= 0, the
eigenfunctionsui1,..,id and consequentlyuc

n are complex-valued. We avoid a complex-valued
implementation of our sparse grid combination technique and handle their real and their
imaginary part separately. We use the fact that the matrices are Hermitian and consequently
the eigenvalues are real numbers. Thus we still can use our SIRQIT-CG eigensolver with
only minimal modifications for handling the complex eigenfunctions. To this end we use
the fact that an eigenvalue problem

Âx̂ =
[

Are −Aim

Aim Are

][
xre

xim

]
= λ
[

Mxre

Mxim

]
(9)

has with eigenvector [xre

xim
] also [−xim

xre
] as eigenvector for the double eigenvalueλ. The com-

posed matrixÂ is real and selfadjoint and possesses the eigenvalues of the originalA just
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twice; see also [47, p. 174]. So we call our eigensolver basically for a matrix with twice
the size (real plus imaginary part) and can proceed as before. The previously described
identification process of discrete eigenvalues by means of matching their eigenfunctions
has to be modified accordingly. We now take the squares of the complex eigensolutions
and compare them on neighboring grids in the identification routine. The squares of the
eigenfunctions are the relevant informations for a physical interpretation anyway. Note that
the identification of the eigenfunctions becomes more difficult the larger the magnetic field
becomes. Then the orderings of the eigenvalues on the various grids of the combination
technique become more and more intertwined. For example, in the case of hydrogen with
magnetic field stronger thanβ = 0.1, we identified the first five eigenvalues. To achieve this
it was necessary to compute up to 14 eigenvalues on the different grids of the combination
technique.

2.4. Graded Grids

If the smoothness requirement (7) on the solution is not fulfilled, then the order
O(h2

n(logh−1
n )d−1) of the error of the sparse grid approximation can in general not be

observed. Actually the order deteriorates toO(hr
n(logh−1

n )d−1), wherer resembles the cor-
responding smoothness ofu. Note that for a finite element discretization on a full grid
Än,...,n an analogous deterioration can be observed if its smoothness requirement, namely
‖∂2u/∂x2

1 + · · · + ∂2u/∂xdu‖L p ≤ c <∞, or its equivalent weak form is not fulfilled.
Then we only obtain anO(hr

n) order for the corresponding error.
In any case, for nonsmooth solutions, an adaptive refinement strategy can be employed to

remedy the situation. The classical finite element method allows adaptive grid refinement
in its h-version [3]. This technique has been successfully applied to the solution of the one-,
two-, and three-dimensional Schr¨odinger equation for hydrogen and related one-particle
systems; see [1, 2, 14]. Instead of finite elements, wavelets might be used also [34]. For a
multigrid solver see [26]. Note, however, that because of the curse of dimensionality there is
no hope for these methods ever to be applied to a six-dimensional problem. Adaptivity helps
to cope with the nonsmooth behavior of the solution but cannot circumvent the intrinsic
O(N6) complexity for the smooth parts of the solution. Besides, it is extremely difficult
to define, to refine, and to code the necessary higher-dimensional adaptive data structures
at all.

The sparse grid Galerkin method as well as the sparse grid finite difference method can
be generalized to incorporate adaptive refinement strategies [5, 9, 11, 20, 40, 48, 49]. So far,
the adaptive sparse grid Galerkin method has been applied successfully to the solution of
the two- and three-dimensional Schr¨odinger equation for hydrogen and related ionized one-
particle systems; see [27, 28]. But because of the extreme difficulty of coding differential
operators more involved than the Laplacian and the more complicated potentials needed in
the helium case, no implementations for higher-dimensional problems exist yet.

The generalization of the combination technique to adaptive local refinement is very
difficult or even impossible. An easy way to obtain at least some a priori adaptive effect
for the combination technique is to use graded instead of uniform grids; see also [25]. A
grading function

g(x) 7→ y, x, y ∈ [a; b]

describes a certain change in the positions of the grid points. To this end, each point of the



COMPUTING EIGENPROBLEMS WITH THE COMBINATION TECHNIQUE 703

FIG. 3. Combination technique for a two-dimensional graded grid of level 4; the grading function isg(x) =
sign(x)x2/a for every coordinate direction.

equidistant grid is mapped onto a point of the graded grid. Such a function can be applied
in each coordinate direction independently, so that the resulting grid is still rectangular.
Note that we roughly know a priori where more grid points are needed for the considered
eigenproblems for hydrogen and helium. For the example of the Coulomb potential the area
around the associated singularity is surely the region where a higher grid point density is
appropriate.

Altogether, we allow a grading function to be prescribed for each coordinate direction.
These functions map all the different grids arising in the combination formula accordingly
and the combination technique then works on a graded sparse grid. An example for the
grading induced by the Coulomb potential is given in Fig. 3. Of course, the formerly linear
basis functions are transformed analogously and the linear interpolation between different
grid spaces must be changed accordingly. For details see [25].

Surely, this approach is not optimal and merely a heuristic one. However, in practice it re-
sults in good improvements on the accuracy of the computed eigenfunctions and eigenvalues
without much additional cost.

2.5. Some Computational Aspects of the Implementation

Let us now comment on the assembly of the stiffness matricesHi1,..,id on the various
gridsÄi1,...,id arising in the combination formula (5). To this end, each row of these ma-
trices has about 3d entries (except near boundaries). This is due to thed-linear test and
trial functions we use in the finite element discretization process. While the component of
the entries belonging to the kinetic energy, i.e., the Laplacian, can be given directly, the
remaining parts of the Hamiltonian involvex-dependent coefficient functions and need to
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be evaluated numerically. Here, especially the computation of the six-dimensional expres-
sion resulting from the electron–electron repulsion energy1|x1−x2| for helium is a tough
numerical integration problem. We have∫ ∫ ∫ ∫ ∫ ∫

φi (x)φ j (x)
|x1− x2| dx, (10)

whereφi (x), φ j (x) denote six-linear test and trial functions. Not only does it involve an
integration formula in six dimensions, but the integrand also exhibits a three-dimensional
area singularity. A straightforward numerical integration with quadrature formulas is not
possible in the parts of the integration domain where the pairsx1i andx2i overlap,i = 1, 2, 3.

Based on the work in [36] we developed recursion formulas for integrals of the type∫ ∫ ∫ ∫ ∫ ∫
xkyl zmur vswt

|(x, y, z)− (u, v, w)| dx dy dz du dv dw,

which make it possible to calculate the above integrals (10) accurately. For details see [17].
But the computations for the remaining parts of the integration domain are also quite costly
because of the high dimensionality of the problem. Altogether, the integration of the entries
of the stiffness matrices is a substantial factor in the total run time, and further savings
are desirable. It must be further investigated if advanced quadrature techniques such as
quasi-Monte Carlo or sparse grid integration [18] might help in this respect.

To reduce the computational work we can take advantage of the symmetry of the under-
lying potentials. This symmetry can be used in the integration of the stiffness matrix entries.
Here integration results for some parts of the domain are just equal to those for certain other
parts because of mirror symmetry. This substantially cuts the cost for the assembly of the
system matrices which are needed in the combination technique.

3. NUMERICAL RESULTS

In this section we use the following notation:λn is a numerical eigenvalue at refinement
leveln, en := |λ−λn|

|λ| is the relative eigenvalue error at leveln in comparison to known exact
solutions or results from other works taken as reference values, andδλn := |λn − λn−1|
is the difference between the corresponding numerical eigenvalues from leveln and level
n− 1.

3.1. The Hydrogen Atom

First we consider the Schr¨odinger equation for the hydrogen atom with no outer fields.
Because of symmetry, the equation can be reduced to a one-dimensional problem for which
an analytical solution is known. Nevertheless, the three-dimensional hydrogen equation is
numerically demanding and therefore serves as a standard test problem for any numerical
eigenvalue calculation of the Schr¨odinger equation. In the Born–Oppenheimer approxima-
tion we get the equation

−1u(x)− 2

|x|u(x) = Eu(x). (11)

Here length is measured in units of the Bohr radiusaBohr, and energy is measured in Rydberg.
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FIG. 4. Plot of the error function for the spatial probability distribution of the electron in thexy-plane for the
ground state of the hydrogen atom at level 8 and 11.

Now we apply our sparse grid combination technique and compare its results to the
known analytic values. To this end, we restrict the problem to the finite domain [−a;a]3

and use homogeneous Dirichlet conditions on the boundary. To grade the sparse grid toward
the origin we use the functiong(x) = sign(x)x2

a for every coordinate direction; compare also
Fig. 3. The Coulomb potential depends on the distance to the origin and, surely, the best
would be a properly graded and rotationally symmetric grid around the origin. Such a
configuration, however, cannot be achieved by the sparse grid combination technique. The
grading of the grid is merely a heuristic which is not optimal but at least improves on the
accuracy.

Figure 4 shows thexy-slice (z= 0) of the error function of the ground state for the
resulting solutions at levels 8 and 11. Here, for display purposes, we useda = 7.5. For the
computations reported in the following tables we used the valuea = 15.

It can be clearly seen that the error is largest at the origin where the nucleus is situated.
Here the solution develops a singularity. This singularity gets quite well isolated by the
graded sparse grid, especially at the higher level. At the boundary of the computational
domain we obtain an error by using homogeneous Dirichlet conditions there. This error is
moderate but it becomes more important on finer levels.

Another source for error is the perturbation we impose in our identification process to
distinguish the multiple eigenvalues when we calculate higher states (2s, 2p). Here we
change the domain to [−a;a] × [−a+ ε;a− ε] × [−a− ε;a+ ε], with very smallε.
Note that the induced error is significantly smaller than the accuracy of the approximation
in all our experiments.

Table I shows the results for the calculation of the three smallest eigenvalues of the
hydrogen problem. Note that the values for the three states 2p0, 2p−1, and 2p+1 are the
same because of symmetry. We denote their common value by 2p. We see that mostly
an error quotient of 2 or slightly better is achieved. This suggests a convergence rate of
O(hr

n log(h−1
n )2) with a value ofr slightly larger than one, which is satisfactory for linear

basis functions, and a severely nonsmooth eigensolution. We make the following remarks:
First, the error introduced by the homogeneous Dirichlet boundary conditions on the bound-
ary of [−a,a]3 for a = 15 seems to influence the convergence rates starting with level 10.
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TABLE I

The First Three Eigenvalues of the Hydrogen Atom: Graded Grid,ml = 1, a = 15

n Points Type λn en
en−1

en
δλn

δλn−1
δλn

4 27 1s −0.7537644 2.4624· 10−1 — — —
2s −0.1983182 2.0673· 10−1 — — —
2p −0.1736482 3.0541· 10−1 — — —

5 135 1s −0.7711986 2.2880· 10−1 1.0762 1.7434· 10−2 —
2s -0.2025577 1.8977· 10−1 1.0894 4.2395· 10−3 —
2p −0.2095986 1.6161· 10−1 1.8898 3.5950· 10−2 —

6 495 1s −0.8893831 1.1106· 10−1 2.0684 1.1818· 10−1 0.1475
2s −0.2244258 1.0230· 10−1 1.8598 2.2187· 10−2 0.1939
2p −0.2325699 6.9720· 10−2 2.3179 2.2971· 10−2 1.5650

7 1,567 1s −0.9293292 7.0670· 10−2 1.5652 3.9946· 10−2 2.9586
2s −0.2357696 5.6921· 10−2 1.7972 1.1344· 10−2 1.9278
2p −0.2435165 2.5934· 10−2 2.6884 1.0947· 10−2 2.0985

8 4,543 1s −0.9659534 3.4047· 10−2 2.0757 3.6624· 10−2 1.0907
2s −0.2428197 2.8721· 10−2 1.9819 7.0501· 10−3 1.6090
2p −0.2475368 9.8530· 10−3 2.6321 4.0202· 10−3 2.7229

9 12,415 1s −0.9837864 1.6214· 10−2 2.0998 1.7833· 10−2 2.0537
2s −0.2465080 1.3968· 10−2 2.0562 3.6883· 10−3 1.9115
2p −0.2490494 3.8023· 10−3 2.5913 1.5126· 10−3 2.6577

10 32,511 1s −0.9932130 6.7870· 10−3 2.3889 9.4266· 10−3 1.8918
2s −0.2484163 6.3350· 10−3 2.2049 1.9082· 10−3 1.9329
2p −0.2495858 1.6570· 10−3 2.2948 5.3635· 10−4 2.8203

11 82,431 1s −0.9974147 2.5853· 10−3 2.6253 4.2017· 10−3 2.2435
2s −0.2492320 3.0719· 10−3 2.0622 8.1577· 10−4 2.3391
2p −0.2497760 8.9596· 10−4 1.8496 1.9028· 10−4 2.8187

12 203,775 1s −0.9987955 1.2045· 10−3 2.1464 1.3808· 10−3 3.0430
2s −0.2495160 1.9360· 10−3 1.5868 2.8403· 10−4 2.8722
2p −0.2498424 6.3040· 10−4 1.4218 6.6420· 10−5 2.8648

Extrapolated 1s −0.999759 2.4062· 10−4 — — —
2s −0.249829 6.8321· 10−4 — — —
2p −0.250007 2.9601· 10−5 — — —

Exact 1s −1.00 — — — —
2s −0.25 — — — —
2p −0.25 — — — —

This is most obvious for the smooth 2p-eigenfunction and the associated eigenvalue from
column 6 of the table. In further experiments with larger values fora the onset of this effect
was observed on higher levels. Then note the different convergence rates for the two types
of second eigenvalues and their associated eigenfunctions. This is due to the different struc-
ture of the eigenfunctions. In Fig. 5 we show a cut through the two eigenfunctions for the
second eigenvalue. Their different structure and smoothness properties can clearly be seen.
This suggests that it would be appropriate to use for each eigenfunction its specially fitted
grading function. Note that we use only one grading function for all eigenvalue problems.
The grading function sign(x)x2/a is tailored to the Coulomb potential and the ground state.
Therefore we lose out on the convergence rate of the much smoother 2p-eigenfunction.
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FIG. 5. Plot of the spatial probability distribution of the electron in thexy-plane for the second eigenfunctions,
i.e., the states 2s and 2p0 of the hydrogen atom.

Here a compromise has been made between the adaptation of the grid to one eigenfunction
and the overall convergence rate for the other eigenfunctions.

Furthermore, we see from Table I that the combination method is able to produce results
on level 12 with a relative error of 10−3 to 10−4, respectively. Here, withml = 1, 109
different small eigenproblems have been solved with a size of only 14.415 interior points
for the largest of them.

Because we employ a grid-based method and compute the results on different levels
anyway, it makes sense to improve on the results by a further classical extrapolation step.
To this end, we take the results on levels 9 to 12 into account, interpolate by means of a
cubic polynomial, and evaluate this polynomial at the origin. The results are given in Table I
(2nd row from below). Note that we gain more than one digit. This approach is legitimate
because we employ a grid-based solution technique (h-version). It is not possible for the
other approaches [7, 8].

3.2. Hydrogen in Magnetic Fields

We now consider hydrogen in a strong magnetic field. The equation to be solved is

(
−1− 2

|x| − 2iβ

( y
−x
0

)
· ∇ + 4βS+ β2(x2+ y2)

)
u = Eu, x ∈ [−a;a]3. (12)

We use the same finite domain size and grading function as in the previous subsection.
The magnetic field strength is measured inBZ = 4.70107× 105 T, β is the strength of
the magnetic field which points in thez-direction, andS is the spin. Now, because of
the magnetic field, this equation can be reduced by symmetry only to a two-dimensional
problem for which an analytical solution is no longer known. Numerically very precise
results for the eigenvalues of the hydrogen atom in strong magnetic fields were presented
in [32, 39] for a wide range of field strengths. We consider in the following the original
three-dimensional equation (12) to test our sparse grid combination method. The results
for the first eigenvalue of hydrogen under the influence of a magnetic field of strength
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TABLE II

First Eigenvalue of the Hydrogen Atom under the Influence of a Magnetic Field

of Strengthβ = 0.5: Graded Grid, ml = 1

n λn en
en−1

en
δλn

δλn−1
δλn

4 −1.0451447 3.7128· 10−1 — — —
5 −1.1005116 3.3797· 10−1 1.0985 5.5367· 10−2 —
6 −1.4457099 1.3032· 10−1 2.5935 3.4520· 10−1 0.1604
7 −1.5923373 4.2110· 10−2 3.0947 1.4663· 10−1 2.3543
8 −1.6293423 1.9849· 10−2 2.1215 3.7001· 10−2 3.9624
9 −1.6467572 9.3728· 10−3 2.1177 1.7415· 10−2 2.1249

10 −1.6555076 4.1089· 10−3 2.2811 8.7504· 10−3 1.9902
11 −1.6596830 1.5971· 10−3 2.5727 4.1754· 10−3 2.0957
12 −1.6609649 8.2601· 10−4 1.9336 1.2819· 10−3 3.2572

Extrapolated −1.661035 7.8384· 10−4 — — —
Corrected with Table I −1.662170 1.0142· 10−4 — — —

Reference value−1.662338 [39]

β = 0.5 are given in Table II. Table III shows the results for three eigenvalues for the case
β = 0.01.

We obtain about the same convergence behavior as that for the case without a magnetic
field. On level 12 we achieve a relative error in the range of 10−3 to 10−4, and classical
extrapolation improves on the result. Because the convergence rates for the computations
with and without magnetic field are very similar, we think that it is justified to use the error
of the case without magnetic field in a further correction step to the case with magnetic
field. To this end, we take the error on level 12 of Table I and add it onto the result for the
case with magnetic field. This approach results in a substantial improvement; see 2nd row
from below in Tables II and III, which justifies our correction procedure a posteriori. The
resulting eigenvalues are quite close to those presented in [39].

In Fig. 6 we give an example of the influence of a magnetic field on the form of two
eigenfunctions (2p−1 and 2p0). We show the isosurfaces of the spatial probability distribu-
tion (uc

n)
2/‖uc

n‖2 of the electron for the values 0.2, 0.4, 0.6, and 0.8 under a magnetic field
with strengthβ = 0.0, 0.01, and 0.3. Here, the direction of the magnetic field is parallel to
the y-axis; we cut the isosurfaces open along thexz-plane.

3.3. Hydrogen in Magnetic and Electric Fields

We now consider the case of a magnetic and an electric field which both influence the
electron of the hydrogen atom. To this end the potential termφ = F · x for the electric field
F has to be added to (12). Note that our sparse grid combination approach can be directly
applied without further modifications. This is not the case for most other methods for the
calculation of energy values of the hydrogen atom in magnetic fields. Their adaptation to
the case of a general additional electric field is not that easily, if at all, possible. The usually
used reduction of the number of dimensions of the equation cannot be directly applied in
the presence of both magnetic and electric fields. Here, the angle between these two fields
is of relevance. With our approach, calculations for hydrogen in general magnetic fields and
electric fields are straightforward. To be able to compare our results with results from the
literature we stick to the simple case of parallel electric and magnetic fields in the following.
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TABLE III

Three Eigenvalues of the Hydrogen Atom under the Influence of a Magnetic Field

with Strength β = 0.01: Graded Grid, ml = 1

n Type λn en
en−1

en
δλn

δλn−1
δλn

4 1s −0.7734026 2.4161· 10−1 — — —
2s −0.2132771 2.0195· 10−1 — — —
2p0 −0.1897908 2.9397· 10−1 — — —

5 1s −0.7908242 2.2453· 10−1 1.0761 1.7422· 10−2 —
2s −0.2185629 1.8217· 10−1 1.1086 5.2857· 10−3 —
2p0 −0.2282972 1.5072· 10−1 1.9504 3.8506· 10−2 —

6 1s −0.9091316 1.0852· 10−1 2.0690 1.1831· 10−1 0.1473
2s −0.2409273 9.8489· 10−2 1.8497 2.2364· 10−2 0.2363
2p0 −0.2515068 6.4380· 10−2 2.3411 2.3210· 10−2 1.6501

7 1s −0.9491121 6.9315· 10−2 1.5656 3.9980· 10−2 2.9591
2s −0.2528442 5.3898· 10−2 1.8273 1.1917· 10−2 1.8767
2p0 −0.2624168 2.3794· 10−2 2.7057 1.0910· 10−2 2.1274

8 1s −0.9857477 3.3391· 10−2 2.0759 3.6636· 10−2 1.0913
2s −0.2600765 2.6836· 10−2 2.0084 7.2323· 10−3 1.6477
2p0 −0.2663834 9.0378· 10−3 2.6327 3.9667· 10−3 2.7504

9 1s −1.0035850 1.5900· 10−2 2.1001 1.7837· 10−2 2.0539
2s −0.2638049 1.2885· 10−2 2.0827 3.7284· 10−3 1.9398
2p0 −0.2678801 3.3702· 10−3 2.6044 1.4966· 10−3 2.6504

10 1s −1.0130126 6.6556· 10−3 2.3890 9.4276· 10−3 1.8920
2s −0.2657138 5.7423· 10−3 2.2439 1.9089· 10−3 1.9532
2p0 −0.2684110 1.4951· 10−3 2.3210 5.3092· 10−4 2.8189

11 1s −1.0172147 2.5351· 10−3 2.6254 4.2021· 10−3 2.2435
2s −0.2665285 2.6937· 10−3 2.1318 8.1473· 10−4 2.3430
2p0 −0.2685996 7.9345· 10−4 1.8844 1.8862· 10−4 2.8147

12 1s −1.0185952 1.1814· 10−3 2.1459 1.3805· 10−3 3.0439
2s −0.2668115 1.6332· 10−3 1.6485 2.8304· 10−4 2.8784
2p0 −0.2686653 5.4945· 10−4 1.4448 6.5712· 10−5 2.8701

Extrapolated 1s −1.019558 2.3730· 10−4 — — —
2s −0.267125 4.6025· 10−4 — — —
2p0 −0.268828 5.5801· 10−5 — — —

Corrected 1s −1.0197997 2.9418· 10−7 — — —
with Table I 2s −0.267296 1.7961· 10−4 — — —

2p0 −0.268823 3.7201· 10−5 — — —

Numerically 1s −1.019800 — — — —
precise [39] 2s −0.267248 — — — —

2p0 −0.268813 — — — —

In Table IV we give the results obtained with the sparse grid combination technique for
the second eigenvalue of the hydrogen atom in a magnetic field of strengthβ = 0.01 and a
parallel electric field of strength 1.9455252× 10−4 FZ . We observe about the same conver-
gence behavior as in the previous experiments. On level 12 we obtain a result with a relative
error of 2.11× 10−4 in comparison to a reference value taken from [15]. After extrapo-
lation we obtain the value−0.269551 and after correction we get the value−0.269709,
respectively. Because the rateδλn−1

δλn
from Table IV is almost the same as in Tables I and III
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FIG. 6. Two second eigenfunctions of the hydrogen atom for different magnetic field strengths. Presented
are the isosurfaces of the spatial probability distribution of the electron for the values 0.2, 0.4, 0.6, and 0.8 (from
inside to outside). The direction of the magnetic field is parallel to they-axis; the isosurfaces are cut open along
thexz-plane.
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TABLE IV

Second Eigenvalue of the Hydrogen Atom in a Magnetic Field of Strengthβ = 0.01

and a Parallel Electric Field of Strength 1.9455252× 10−4 FZ: Graded Grid, ml = 1

n λn en
en−1

en
δλn

δλn−1
δλn

4 −0.1908852 2.9156· 10−1 — — —
5 −0.2292617 1.4914· 10−1 1.9550 3.8377· 10−2 —
6 −0.2522837 6.3695· 10−2 2.3414 2.3022· 10−2 1.6670
7 −0.2631517 2.3360· 10−2 2.7266 1.0868· 10−2 2.1183
8 −0.2671102 8.6689· 10−3 2.6947 3.9585· 10−3 2.7455
9 −0.2686045 3.1231· 10−3 2.7758 1.4943· 10−3 2.6490

10 −0.2691349 1.1546· 10−3 2.7049 5.3039· 10−4 2.8174
11 −0.2693234 4.5501· 10−4 2.5375 1.8848· 10−4 2.8140
12 −0.2693891 2.1135· 10−4 2.1530 6.5661· 10−5 2.8705

Extrapolated −0.269551 3.8960· 10−4 — — —
Corrected with Table I −0.269709 9.7450· 10−4 — — —

Reference value−0.269446 [15]

for the 2p case we infer an accuracy of 10−5 for the extrapolated eigenvalue. This indicates
that the reference value is less precise than our result.

3.4. The Helium Atom

Now we consider the Schr¨odinger equation for the helium atom with no outer fields. In
the Born–Oppenheimer approximation we have the six-dimensional equation 2∑

j=1

[
−1 j − 2

|x j |
]
+ 1

|x1− x2|

u = Eu, x = (x1, x2) ∈ [−a;a]6,

to which we apply our sparse grid combination technique. In the following, we leta = 15
and choose the same grading function as previously; i.e.,g(x) = sign(x)x2/a for every
coordinate direction. The parameterml is set to 1. Note that the full combination technique,
i.e., ml = 0, resulted in wrong results, and we had to useml = 1 already for the ground
state. It seems that the area singularity has too large an influence on grids where only one
inner point is present in some dimensions. In contrast to other methods we make no use
of symmetries to reduce the number of dimension but deal with the full six-dimensional
equation instead.

The number of points of the gridsÄi1,...,id dealt with in the combination technique is
only of order O(h−1) and the biggest of these grids on level 12 has only 50,421 inner
points. Nevertheless, because we have a six-dimensional problem and use 6-linear test
and trial functions, a row of the stiffness matrix has typically 729 nonzero entries (except
near the boundary). On level 12 and withml = 1 the biggest matrix has a size of 50,421,
possesses 17,332,693 nonzero entries, and needs about 350 MB storage. The complete
set of grids which make up this sparse grid has 2,534,913 inner points. With this level
we reached the limit of the main memory of our computer. Because of the quite long run
time needed for the setup of the matrix parts of the potential term (see the discussion in
Section 2.5) at least these matrix data must be kept in memory and cannot be computed on
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TABLE V

First Eigenvalue of Helium: Graded Grid, ml = 1

n λn en
en−1

en
δλn

δλn−1
δλn

7 −1.0811176 2.5536· 10−1 — — —
8 −1.1366323 2.1712· 10−1 1.1761 5.5515· 10−2 —
9 −1.3102990 9.7505· 10−2 2.2268 1.7367· 10−1 0.3197

10 −1.3696518 5.6624· 10−2 1.7220 5.9353· 10−2 2.9251
11 −1.4192451 2.2466· 10−2 2.5205 4.9593· 10−2 1.1968
12 −1.4423054 6.5824· 10−3 3.4130 2.3060· 10−2 2.1506

Extrapolated −1.443886 5.4938· 10−3 — — —

Reference value−1.4518622 [4]

the fly. These memory limitations have prevented us so far from obtaining results on finer
levels.

Table V gives the values for the first eigenvalue for helium computed with the combination
technique. We see a reasonable convergence rate similar to that in the experiments for
hydrogen. In comparison with a reference value from [4] we get on level 12 a relative
accuracy of 6.58× 10−3. A classical extrapolation step involving the results from levels 9 to
12 gives even a slightly better value. However, surely, to improve on the result, computations
on higher levels are necessary in the future. This requires a large parallel supercomputer.

3.5. The Helium Atom in Strong Magnetic Fields

First calculations for helium in strong magnetic fields were performed only in the past
few years. The most accurate results so far were presented in [7], where a two-particle basis
composed of one-particle states of a special Gaussian basis set was used. Similar accurate
results were reached from a combination of the hyperspherical close coupling approach
and a finite element method of quintic order [8]. Both methods involve a reduction in the
dimension of the problem. In contrast, we treat in the following the full 6-dimensional
equation for the helium atom in a strong magnetic fieldBz along thez-axis, 2∑

j=1

−1 j − 2

|x j | − 2iβ

 yj

−xj

0

· ∇ + 4βSj + β2
(
x2

j + y2
j

)+ 1

|x1− x2|

u = Eu,

(13)

wherex = (x1, x2) ∈ [−a;a]6 with our sparse grid combination technique. Here,a = 15
was chosen. Furthermore, the grading function from the previous experiments was used
again.

The results are displayed in Table VI. We obtain reasonable convergence results similar
to the rates achieved before. On level 12 we achieve a relative accuracy of 6.89× 10−3.
A classical extrapolation step gives only a slightly better value. Because the convergence
rates for the computations with and without magnetic field are very similar, we think again
that it is justified to take the error on level 12 of the case without magnetic field and use
it to correct the new data. Similarly to the case of hydrogen, this approach resulted in a
substantial improvement; see 2nd row from below in Table VI. With this defect correction,
we obtain an eigenvalue which is quite near to the other results published in literature so far.



COMPUTING EIGENPROBLEMS WITH THE COMBINATION TECHNIQUE 713

TABLE VI

First Eigenvalue of Helium in a Magnetic Field of Strengthβ = 0.05: Graded Grid, ml = 1

n λn en
en−1

en
δλn

δλn−1
δλn

7 −1.0521588 2.6743· 10−1 — - —
8 −1.1114353 2.2616· 10−1 1.1825 5.9276· 10−2 —
9 −1.2937951 9.9186· 10−2 2.2801 1.8236· 10−1 0.3251

10 −1.3525565 5.8273· 10−2 1.7021 5.8761· 10−2 3.1034
11 −1.4032721 2.2962· 10−2 2.5378 5.0716· 10−2 1.1586
12 −1.4263453 6.8970· 10−3 3.3293 2.3073· 10−2 2.1980

Extrapolated −1.427516 6.0790· 10−3 — — —
Corrected with Table V −1.435902 2.4292· 10−4 — — —

Reference value−1.436251 [7] (−1.4363474 in [8])

In a series of experiments we computed the first eigenvalue of helium in a magnetic field
for various values ofβ. Forβ = 0.01, 0.025, and 0.05 the results are given in Table VII.

For comparison, we also listed the numbers reported in other publications. We see that
these results differ quite a bit. The other approaches surely have their own distinct sources
of error (model approximations, discretization) whose influence on the final result is not
completely understood. We believe that 3 to 4 reliable digits are state of the art. Our
extrapolated and corrected results are therefore quite accurate and satisfactory.

3.6. The Helium Atom in Strong Magnetic and Electric Fields

Finally, we consider the problem of helium in strong magnetic and electric fields. To this
end the term

∑2
j=1 F · x j must be added to the left-hand side of Eq. (13). Here we study the

case of an electric field which is perpendicular to the magnetic field. The results obtained by
the sparse grid combination technique are shown in Table VIII. We achieve a convergence
behavior similar to that observed before.

In a further experiment we considered the case of helium under a magnetic field of
strengthβ = 0.05 and a parallel electric field of strength 0.01. There we obtained the value
−1.454730 for the first eigenvalue.

TABLE VII

Comparison of Energies for He atβ = 0.01, 0.025 and 0.05 Obtained by Different Methods

β = 0.01 β = 0.025 β = 0.05

This work (level 12) −1.4416437 −1.4382257 −1.4263453
This work extrapolated −1.443205 − 1.439708 −1.427516
This work corrected with Table V −1.451200 −1.4477832 −1.435902
Braunet al. [8] −1.4512222 −1.4479 −1.4363474
Joneset al. [30] −1.4302 −1.4155
Beckenet al. [7] −1.4510435 −1.436251
Thurneret al. [46] −1.450975 −1.4476 −1.4357
Scrinziet al. [42] −1.4477
Larsenet al. [33] −1.4468
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TABLE VIII

First Eigenvalue of Helium in a Magnetic Field of Strengthβ = 0.05 and a Perpendicular

Electric Field of Strength 0.01: Graded Grid, ml = 1

n λn en
en−1

en
δλn

δλn−1
δλn

7 −1.0748930 — — — —
8 −1.1354310 — — 6.0538· 10−2 —
9 −1.3138772 — — 1.7845· 10−1 0.3393

10 −1.3719900 — — 5.8113· 10−2 3.0707
11 −1.4219477 — — 4.9958· 10−2 1.1632
12 −1.4448630 — — 2.2292· 10−2 2.1801

Extrapolated −1.446180 — — — —
Corrected with Table V −1.454420 — — — —

4. CONCLUSIONS

We presented the sparse grid combination technique for the calculation of eigenvalues of
the Schr¨odinger equation for the hydrogen atom and the helium atom in magnetic and electric
fields. In comparison to other methods we did not reduce the dimensions of the problem
besides the standard Born–Oppenheimer approximation but directly treated the three- and
the six-dimensional equation, respectively. For the hydrogen atom we obtained results which
were almost equal to those in the literature which are considered to be numerically exact.
Because of computer memory limitations we could not perform as precise calculations
for helium as intended, but the results were still quite near to those published elsewhere.
We admit that it is currently not possible to compute eigenvalues from the higher end of
the spectrum. Also the grading of the grid, the extrapolation of the results, and the defect
correction step is somewhat heuristic. But the important advantage of our approach is its
universality. There is almost no difference in treating atoms with and without external fields.
Without further modifications it was possible to calculate the eigenvalue of helium in the
presence of magneticandelectric fields.

So far we have used onlyd-linear test and trial functions in the discretization step of the
combination technique. A possibility for further improvement is the use of higher polyno-
mials. Justd-quadratic test and trial functions should bring a substantial improvement in
the accuracy; see also [10]. On the other hand we have to work further on the implementa-
tion if we ever want to treat higher-dimensional problems such as lithium, beryllium, and
boron. The number of grid points involved in the combination technique is only of order
O(h−1

n (log(h−1
n ))d−1) and scales very moderately withd. But note that the order constant

is exponentially dependent ond, at least as long as we used-linear test and trial functions.
Note finally that the treatment of higher-dimensional problems such as lithium, beryllium,
and boron with the sparse grid combination technique is a future challenge for a large
parallel supercomputer with many thousands of processors because the number of prob-
lems to be solved independently is of orderO(d · (logh−1

n )d−1).
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